Primary Causes of Heart Disease

Framingham and the Muddy Waters

Jeffry N. Gerber, MD
Denver’s Diet Doctor
“Those with cardiovascular disease not identified with diabetes… are simply undiagnosed” - Dr. Joseph R. Kraft
Dr. Joseph R. Kraft - diabetes-epidemic.com
Standard Methods Inferior

- FBG > 100 mg/dl (5.5 mmol/l) screening
- 2hr OGTT > 140 mg/dl (7.8 mmol/l)
- HbA1c
Dr. Kraft 5hr Insulin Assay

- Gold standard based on RIA insulin (uIU/ml)
- 14,384 subjects, 5hr glucose plus insulin
- Defined 5 distinct patterns
- 3 patterns of hyperinsulinemia – Diabetes In-Situ
- Redefining diabetes at its earliest stage
Pattern 1 - Euinsulinemia

Kraft Patterns - The Earliest Diagnosis of Diabetes

Pattern 1 = Normal Euinsulinemia

These people are Not Diabetic
Patterns 2,3,4 - Hyperinsulinemia

Insulin Response Patterns 2 to 4 are: Hyperinsulinemia/Diabetes In Situ

These people are Diabetic. Period.

Image courtesy Ivor Cummins BE(Chem) CEng MIEI
Patterns 2, 3, 4 - Hyperinsulinemia

Kraft Patterns - The Earliest Diagnosis of Diabetes

Insulin Response Patterns 2 to 4 are:
Hyperinsulinemia/Diabetes In Situ
These people are Diabetic. Period.

Image courtesy Ivor Cummins BE(Chem) CEng MIEI
Patterns 5 - Insulinopenic

Kraft Patterns - The Earliest Diagnosis of Diabetes

Patterns 5 = Low Insulin

These people are Insulinopenic

Image courtesy Ivor Cummins BE(Chem) CEng MIEI
Glucose vs. Insulin

<table>
<thead>
<tr>
<th>Hyperglycemia Test</th>
<th>Hyperinsulinemia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disease</td>
<td>No Disease</td>
</tr>
<tr>
<td>Positive</td>
<td>True Positives</td>
<td>False Positives</td>
</tr>
<tr>
<td></td>
<td>6180</td>
<td>186</td>
</tr>
<tr>
<td>Negative</td>
<td>False Negatives</td>
<td>True Negatives</td>
</tr>
<tr>
<td></td>
<td>5764</td>
<td>2254</td>
</tr>
<tr>
<td>Totals</td>
<td>11944</td>
<td>2440</td>
</tr>
</tbody>
</table>

Sensitivity 52%

Specificity 92%

Data recompiled from Kraft J. R. Diabetes Epidemic & You. 2011
Euglycemia

NFG & NGT
Negative Predictive Value

- 28% Normal - Kraft Pass
 True Negatives
- 72% 'Normal' - Kraft Fail
 False Negatives
Hyperglycemia

IFG or IGT or DMGT

Sensitivity

- 52% Abnormal - Kraft Fail True Positives
- 48% 'Normal' - Kraft Fail False Negatives
Predicting population risk
Predicting population risk

That 49%-52% in the US are now…

pre-Diabetic or Diabetic.

Pre-Diabetic ≈ Diabetic ≈ Insulin Resistant ≈ Hyperinsulinemic
Predicting population risk

That 49%-52% in the US are now…
pre-Diabetic or Diabetic.

Pre-Diabetic ≈ Diabetic ≈ Insulin Resistant ≈ Hyperinsulinemic

Using Kraft’s test, probably >65% would have
Hyperinsulinemia / Diabetes In Situ

Diabetes Paradox?

• Despite more diabetes & obesity there’s less heart disease
• Morbidity & mortality not to be confused with incidence and prevalence
Dr. Kraft on CV risk

• Atherosclerosis is a metabolic disease
• Missing pre-diabetes and diabetes also misses cardiovascular disease
The Metabolic Syndrome

Defined in 1988 by Gerald M Reaven, MD
Professor emeritus in medicine at the Stanford University School of Medicine

INSULIN RESISTANCE SYNDROME
- Atherosclerosis
- Coronary Heart Disease
The Metabolic Syndrome

1. Glucose Intolerance
2. Hyperinsulinemia
3. Low HDL/ High TRGs
4. Elevated Blood Pressure
5. Abdominal obesity

Defined in 1988 by Gerald M Reaven, MD
Professor emeritus in medicine at the Stanford University School of Medicine
The Metabolic Syndrome

1. Glucose Intolerance
2. Hyperinsulinemia
3. Low HDL/ High TRGs
4. Elevated Blood Pressure
5. Abdominal obesity

Defined in 1988 by Gerald M Reaven, MD
Professor emeritus in medicine at the Stanford University School of Medicine

- Atherosclerosis
- (*Obesity)
- Gout
- Cancer
- Stroke
- Atherosclerosis
- Coronary Heart Disease
- Type 2 Diabetes
- Alzheimer's
- Fatty Liver Disease
- Asthma
- Arthritis
- Etc. etc. …
Framingham Distraction

- Cholesterol, Smoking, HTN, Diabetes
- Guidelines, tools, risk calculators
- Central theme to lower cholesterol
- Diabetes risk buried
The Framingham Risk Score

‘Bad’ Cholesterol?
Do You Smoke?
Are you male?
High Blood Pressure?
Diabetes?
The Framingham Risk Score

‘Bad’ Cholesterol?

Do You Smoke?

Are you male?

High Blood Pressure?

Diabetes?

THIS IS STATISTICAL GUESSWORK
The Framingham Risk Score

‘Bad’ Cholesterol?

Do You Smoke?

Are you male?

High Blood Pressure?

Diabetes?

THIS IS STATISTICAL GUESSWORK

HEAVILY CHOLESTEROL WEIGHTED
The Framingham Risk Score

‘Bad’ Cholesterol?

Do You Smoke?

Are you male?

High Blood Pressure?

Diabetes?

This is statistical guesswork

Heavily cholesterol weighted

These are the muddy waters.
Lipid Lowering Therapy
Lipid Lowering Therapy

- Hyperlipidemia requires remedy
- Is cholesterol innately toxic?
- Mechanisms remain elusive
- Diet-heart hypothesis unproven
- Statins provide small benefit
Debunking the Lipid Hypothesis

- Get with the Guidelines 2009
- Towards a Paradigm Shift in Cholesterol Treatment 2015
Mechanisms for metabolic disease are established...

Atherogenic Dyslipidemia
- ↑ VLDL
- ↑ LDL
- ↑ Oxidised LDL
- ↑ Count
- ↑ TG
- ↓ HDL

Insulin Resistance

Hyperinsulinemia

IR Fatty Liver

Arterial Damage

- ↑ Blood Insulin
- ↑ Blood Glucose
- ↑ Blood Pressure
- ↑ tot/HDL Ratio

Mechanisms for metabolic disease are Established...
Mechanisms for metabolic disease are Established…

ATHEROGENIC DYSLIPIDEMIA
- ↑ VLDL
- ↑ LDL
- ↑ Oxidised LDL
- ↑ Tot/HDL Ratio

INSULIN RESISTANCE
- ↓ HDL
- ↓ Blood Insulin
- ↓ Blood Glucose
- ↑ Blood Pressure

METABOLIC MAYHEM:

ARTERIAL DAMAGE!

HYPERINSULINEMIA
- ↑ Blood Insulin
- ↑ Blood Glucose
- ↑ Blood Pressure

FATTY LIVER...

Insulin Resistance

Mechanisms for metabolic disease are Established...
Mechanisms for metabolic disease are Established…

METABOLIC MAYHEM:
 - Inflammation
 - Oxidative Stress
 - Advanced Glycation

ATHEROGENIC DYSLIPIDEMIA
 - ↑ VLDL
 - ↑ LDL COUNT
 - ↑ BLOOD INSULIN
 - ↓ HDL
 - ↑ TRIGL/CERIDES
 - ↑ BLOOD PRESSURE
 - ↑ OXIDISED LDL
 - ↑ Tot/HDL Ratio

INSULIN RESISTANCE
 - HYPERINSULINEMIA

INSULIN RESISTANCE
 - HYPERINSULINEMIA

Mechanisms for metabolic disease are Established…

ARTERIAL DAMAGE !
Atherogenic Dyslipidemia

- ↑ VLDL
- ↑ LDL Count
- ↑ Blood Insulin
- ↓ HDL
- ↑ Triglycerides
- ↑ Blood Pressure
- ↑ Oxidised LDL
- ↑ Tot/HDL Ratio

Mechanisms for metabolic disease are established...

Metabolic Mayhem:

- Inflammation
- Oxidative Stress
- Advanced Glycation
- Insulin Resistance
- Hyperinsulinemia

Arterial Damage!
Atherogenic dyslipidemia:
- ↑ VLDL
- ↑ LDL
- ↓ HDL
- ↑ Triglycerides
- ↑ Oxidised LDL
- ↑ IR fatty liver...
- ↑ Tot/HDL Ratio

Mechanisms for metabolic disease are Established...

Metabolic Mayhem:
- Inflammation
- Oxidative Stress
- Advanced Glycation

Insulin Resistance
Hyperinsulinemia

 ↑ Blood Glucose

Arterial Damage!
Mechanisms for metabolic disease are established...

Atherogenic Dyslipidemia
- ↑VLDL
- ↑LDL COUNT
- ↑BLOOD INSULIN
- ↓HDL
- ↑TRIGLYCERIDES
- ↑OXIDISED LDL
- ↑Tot/HDL Ratio

Insulin Resistance
- HYPERINSULINEMIA

Metabolic Mayhem:
- Inflammation
- Oxidative Stress
- Advanced Glycation

Arterial Damage!

- 'BAD CHOLESTEROL' ???
Studies supporting these mechanisms

- Diabetes and heart disease
- Proper measurement of glucose and Insulin
- Insulin vs. cholesterol
INSULIN Versus ‘CHOLESTEROL’

Helsinki: One of the few studies to properly use a Kraft-type test…

INSULIN Versus ‘CHOLESTEROL’

Helsinki: One of the few studies to properly use a Kraft-type test…

INSULIN Versus ‘CHOLESTEROL’

Helsinki: One of the few studies to properly use a Kraft-type test...

INSULIN Versus ‘CHOLESTEROL’

Helsinki: One of the few studies to properly use a Kraft-type test…

Helsinki: One of the few studies to properly use a Kraft-type test...
Insulin Vs ‘Bad Cholesterol’ in head-to-head Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Insulin /Glucose</th>
<th>‘Bad Cholesterol’</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Lipid levels in patients hospitalized with coronary artery disease:…” (2009)</td>
<td>Not available</td>
<td>Inverse ! 😊</td>
</tr>
<tr>
<td>“Interrelation between angiographic severity of coronary artery disease and…” (1993)</td>
<td>Highly Significant</td>
<td>Not Significant</td>
</tr>
<tr>
<td>"Progression of Coronary Artery Calcium and Risk of First Myocardial…” (2004)</td>
<td>Highly Significant</td>
<td>Not Significant</td>
</tr>
<tr>
<td>“Low admission LDL-cholesterol…increased 3-year all-cause mortality” (2009)</td>
<td>Not available</td>
<td>Inverse ! 😊</td>
</tr>
<tr>
<td>Association of Plasma Tryglyceride and C-Peptide with CHD…” (1990)</td>
<td>Highly Significant</td>
<td>Not Significant</td>
</tr>
</tbody>
</table>

Doi:10.1111/j.1365-2796.2004.01371.x

Circ J 2004; 68: 47 –52

http://dx.doi.org/10.1016/j.ahj.2008.08.010

Am J Cardiol. 1993 Aug 15;72(5):397-401

Dioid:10.1161/01.ATV.0000127024.40516.ef

doi:10.1093/eurheartj/ehp221

Future research...

• Insulin vs. ‘bad cholesterol’
• Interventional food trials - low carb vs low fat
• Tracking subclinical disease using calcium scans
• Cardiovascular outcomes
It’s the Insulin Stupid!

- Atherosclerosis is a symptom of diabetes
- Focus on metabolic disease and hormonal dysregulation
- Many at risk are missed
- Diet and lifestyle, not medicine
Diet and Lifestyle

✓ Low carb best
✓ Eliminating processed food
✓ Eating less
✓ Movement & activity
✓ Smoking cessation
✓ Sunlight
✓ Proper sleep & happiness
Clinical assessment

- Early level of suspicion
- FBG & HbA1c - are poor screening tools
- 2 hr OGTT including 1hr glucose <155 mg/dl (8.6 mmol/l)
- Insulin - fasting, 5hr assay, 2hr <30 uIU/ml
- Inflammatory markers, lipid quality, etc…
- Body fat, waist-to-height

doi: http://dx.doi.org/10.1210/jc.2015-2573
Cardiovascular imaging

- Heart catheterization
- CT angiogram
- IVUS
- Cardiac MR
- CIMT
- Coronary artery calcium score
“We Stand on the Shoulder’s of Giants…”

Bruce Brundage
Cardiologist
Former Professor David Geffan
School of Medicine UCLA

Doug Boyd
Physicist, Inventor of CAC Technology
Former Professor of Radiology (Physics)
UCSF

Harvey S. Hecht
Cardiologist
Professor Mount Sinai Medical Centre New York

John A. Rumberger
Cardiologist
Princeton Longevity Centre

Arthur Agatston
Cardiologist
Associate Professor of Medicine
University of Miami

Matthew J. Budoff
Cardiologist
Professor of Medicine UCLA
The CT Scan – and the CAC Score
The CT Scan – and the CAC Score
What about Studies on CAC?
Screening Power of CAC Scoring

<table>
<thead>
<tr>
<th>Study</th>
<th>Predicted Risk with CAC > 100 Vs CAC < 100 (after RF adjustment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 St Francis Heart</td>
<td>Predicted ~10x Risk with CAC > 100 Vs CAC < 100 (after RF adjustment, and CRP failed)</td>
</tr>
<tr>
<td>2008 MESA</td>
<td>Predicted ~8x Risk with CAC > 100 Vs CAC < 100 (after RF adjustment)</td>
</tr>
<tr>
<td>2003 Kondos et Al</td>
<td>Predicted ~7x Risk with CAC > 170 Vs CAC < 170 (after RF adjustment)</td>
</tr>
<tr>
<td>2005 Taylor et al</td>
<td>Predicted ~12x Risk with CAC > 0 Vs CAC < 0 (after RF adjustment, and CRP failed)</td>
</tr>
<tr>
<td>2005 Yeboah et al</td>
<td>CAC beat all predictors as always (CIMT, brachial flow dilation etc. failed again).</td>
</tr>
<tr>
<td>2008/2010/2012</td>
<td>CAC re-classified ~60% of Middle-Risk people...20% became High-Risk, 39% became Low-Risk (CAC blew away CIMT and other predictors by a full order of magnitude)</td>
</tr>
<tr>
<td>Pencina/Polonsky et al</td>
<td></td>
</tr>
<tr>
<td>Budoff et al 2009</td>
<td>CAC = 1 to 10 showed 20x more first-year events vs. CAC = 0 (note factor changes over time...!)</td>
</tr>
<tr>
<td>Raggi/Greenland et al2000/2010</td>
<td>CAC > 400 had 4.8% cardiac events per year, versus 0.1% for CAC = 0. Greenland et al verified CAC = 0 had 0.1% events over 3-5 years, independent of Risk Factors...</td>
</tr>
</tbody>
</table>
Screening Power of CAC Scoring

<table>
<thead>
<tr>
<th>Study</th>
<th>Screening Power of CAC Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 St Francis Heart</td>
<td>Predicted ~10x Risk with CAC > 100 Vs CAC < 100 (after RF adjustment, and CRP failed)</td>
</tr>
<tr>
<td>2008 MESA</td>
<td>Predicted ~8x Risk with CAC > 100 Vs CAC < 100 (after RF adjustment)</td>
</tr>
<tr>
<td>2003 Kondos et Al</td>
<td>Predicted ~7x Risk with CAC > 170 Vs CAC < 170 (after RF adjustment)</td>
</tr>
<tr>
<td>2005 Taylor et al</td>
<td>Predicted ~12x Risk with CAC > 0 Vs CAC < 0 (after RF adjustment, and CRP failed)</td>
</tr>
<tr>
<td>2005 Yeboah et al</td>
<td>CAC beat all predictors as always (CIMT, brachial flow dilation etc. failed again).</td>
</tr>
<tr>
<td>2008/2010/2012 Pencina/Polonsky et al</td>
<td>CAC re-classified ~60% of Middle-Risk people...20% became High-Risk, 39% became Low-Risk (CAC blew away CIMT and other predictors by a full order of magnitude)</td>
</tr>
<tr>
<td>Budoff et al 2009</td>
<td>CAC = 1 to 10 showed 20x more first-year events vs. CAC = 0 (note factor changes over time...)</td>
</tr>
<tr>
<td>Raggi/Greenland et al 2000/2010</td>
<td>CAC > 400 had 4.8% cardiac events per year, versus 0.1% for CAC = 0. Greenland et al verified CAC = 0 had 0.1% events over 3-5 years, independent of Risk Factors...</td>
</tr>
</tbody>
</table>

100’s of thousands of people tracked in these and other CAC studies.
Screening Power of CAC Scoring

<table>
<thead>
<tr>
<th>Study</th>
<th>Screening Power of CAC Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 St Francis Heart</td>
<td>Predicted ~10x Risk with CAC > 100 Vs CAC < 100 (after RF adjustment, and CRP failed)</td>
</tr>
<tr>
<td>2008 MESA</td>
<td>Predicted ~8x Risk with CAC > 100 Vs CAC < 100 (after RF adjustment)</td>
</tr>
<tr>
<td>2003 Kondos et Al</td>
<td>Predicted ~7x Risk with CAC > 170 Vs CAC < 170 (after RF adjustment)</td>
</tr>
<tr>
<td>2005 Taylor et al</td>
<td>Predicted ~12x Risk with CAC > 0 Vs CAC < 0 (after RF adjustment, and CRP failed)</td>
</tr>
<tr>
<td>2005 Yeboah et al</td>
<td>CAC beat all predictors</td>
</tr>
<tr>
<td>2008/2010/2012 Pencina/Polonsky et al</td>
<td>CAC re-classified
(CAC blew away CIMT and other predictors by a full order of magnitude)
High-Risk, 39% became Low-Risk</td>
</tr>
<tr>
<td>Budoff et al 2009</td>
<td>CAC = 1 to 10 showed 20x more first-year events vs. CAC = 0 (note factor changes over time...!)</td>
</tr>
<tr>
<td>Raggi/Greenland et al 2000/2010</td>
<td>CAC > 400 had 4.8% cardiac events per year, versus 0.1% for CAC = 0. Greenland et al verified CAC = 0 had 0.1% events over 3-5 years, independent of Risk Factors...</td>
</tr>
</tbody>
</table>

100’s of thousands of people tracked in these and other CAC studies.
Always the best test, across all the studies....

<table>
<thead>
<tr>
<th>Study</th>
<th>Screening Power of CAC Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 St Francis Heart</td>
<td>Predicted ~10x Risk with CAC > 100 Vs CAC < 100 (after RF adjustment, and CRP failed)</td>
</tr>
<tr>
<td>2008 MESA</td>
<td>Predicted ~8x Risk with CAC > 100 Vs CAC < 100</td>
</tr>
<tr>
<td>2003 Kondos et Al</td>
<td>Predicted ~7x Risk with CAC > 170 Vs CAC < 170</td>
</tr>
<tr>
<td>2005 Taylor et al</td>
<td>Predicted ~12x Risk with</td>
</tr>
<tr>
<td>2005 Yeboah et al</td>
<td>CAC beat all predictors</td>
</tr>
<tr>
<td>2008/2010/2012 Pencina/Polonsky et al</td>
<td>CAC re-classified by CAC (CAC blew away CIMT, etc., making it High-Risk, 39% became Low-Risk)</td>
</tr>
<tr>
<td>Budoff et al 2009</td>
<td>CAC = 1 to 10 showed 20x more first-year events vs. CAC = 0 (note factor changes over time...)!</td>
</tr>
<tr>
<td>Raggi/Greenland et al 2000/2010</td>
<td>CAC > 400 had 4.8% cardiac events per year, versus 0.1% for CAC = 0. Greenland et al verified CAC = 0 had 0.1% events over 3-5 years, independent of Risk Factors...</td>
</tr>
</tbody>
</table>

100's of thousands of people tracked in these and other CAC studies.

Screening for Ischemic Heart Disease with Cardiac CT: Current Recommendations Volume 2012, Article ID 812046, http://dx.doi.org/10.6064/2012/812046

Calcium is not a ‘Risk Factor’

CALCIUM SEES THE DISEASE PROCESS ITSELF
CAC Score

<table>
<thead>
<tr>
<th>Calcium Score</th>
<th>Risk Equivalent</th>
<th>10-Year Event Rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Very low</td>
<td>1.1-1.7</td>
</tr>
<tr>
<td>1-100</td>
<td>Low</td>
<td>2.3-5.9</td>
</tr>
<tr>
<td>101-400</td>
<td>Intermediate</td>
<td>12.8-16.4</td>
</tr>
<tr>
<td>>400</td>
<td>High</td>
<td>22.5-28.6</td>
</tr>
<tr>
<td>>1000</td>
<td>Very high</td>
<td>37</td>
</tr>
</tbody>
</table>

J Am Coll Cardiol Img. 2015;8(5):579-596
Framingham Versus Calcium Scoring & CAC

<table>
<thead>
<tr>
<th>Muddy Waters: Framingham Risk Score</th>
<th>AND WITH YOUR CAC SCORE ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1-80</td>
</tr>
<tr>
<td></td>
<td>81-400</td>
</tr>
<tr>
<td></td>
<td>401-600</td>
</tr>
<tr>
<td></td>
<td>>600</td>
</tr>
</tbody>
</table>
Framingham Versus Calcium Scoring & CAC

<table>
<thead>
<tr>
<th>Muddy Waters: Framingham Risk Score</th>
<th>AND WITH YOUR CAC SCORE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.4%</td>
</tr>
<tr>
<td>1-80</td>
<td>5.4%</td>
</tr>
<tr>
<td>81-400</td>
<td>16%</td>
</tr>
<tr>
<td>401-600</td>
<td>25%</td>
</tr>
<tr>
<td>>600</td>
<td>36%</td>
</tr>
</tbody>
</table>

Muddy Waters: Framingham Risk Score

- 10%
Framingham Versus Calcium Scoring & CAC

<table>
<thead>
<tr>
<th>Muddy Waters: Framingham Risk Score</th>
<th>AND WITH YOUR CAC SCORE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

- 0
- 1-80
- 81-400
- 401-600
- >600
Framingham Versus Calcium Scoring & CAC

<table>
<thead>
<tr>
<th>Muddy Waters: Framingham Risk Score</th>
<th>AND WITH YOUR CAC SCORE?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>10%</td>
<td>2.4%</td>
</tr>
</tbody>
</table>
Framingham Versus Calcium Scoring & CAC

<table>
<thead>
<tr>
<th>Muddy Waters: Framingham Risk Score</th>
<th>AND WITH YOUR CAC SCORE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.4%</td>
</tr>
<tr>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>

??
Framingham Versus Calcium Scoring & CAC

<table>
<thead>
<tr>
<th>Muddy Waters: Framingham Risk Score</th>
<th>AND WITH YOUR CAC SCORE ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>1-80</td>
<td>2.4%</td>
</tr>
<tr>
<td>81-400</td>
<td>5.4%</td>
</tr>
<tr>
<td>401-600</td>
<td>16%</td>
</tr>
<tr>
<td>>600</td>
<td>25%</td>
</tr>
<tr>
<td>10%</td>
<td>36%</td>
</tr>
</tbody>
</table>

Muddy Framingham takes a guess...
The calcium scan sees the disease.

Muddy Framingham takes a guess... and with your CAC score?

<table>
<thead>
<tr>
<th>Framingham Risk Score</th>
<th>0</th>
<th>1-80</th>
<th>81-400</th>
<th>401-600</th>
<th>>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>2.4%</td>
<td>5.4%</td>
<td>16%</td>
<td>25%</td>
<td>36%</td>
</tr>
</tbody>
</table>

Muddy Framingham takes a guess... The calcium scan sees the disease.
And what about CAC Score progression??
And what about CAC Score progression??

Yearly CAC Score Increase High (more than 15%)

Starting Score 100-1000 3.5 Years Pass by…
And what about CAC Score progression??

Yearly CAC Score Increase High (more than 15%)

Starting Score 100-1000

3.5 Years Pass by…
And what about CAC Score progression??

Yearly CAC Score Increase High (more than 15%)

Starting Score 100-1000 3.5 Years Pass by…

Yearly CAC Score Increase Low (less than 15%)

Starting Score 100-1000 6 Years Pass by…

“Progression of Coronary Artery Calcium and Risk of First Myocardial Infarction in Patients Receiving Cholesterol-Lowering Therapy”
And what about CAC Score progression??

Yearly CAC Score Increase High (more than 15%)

Starting Score 100-1000

3.5 Years Pass by…

Yearly CAC Score Increase Low (less than 15%)

Starting Score 100-1000

6 Years Pass by…

“Progression of Coronary Artery Calcium and Risk of First Myocardial Infarction in Patients Receiving Cholesterol-Lowering Therapy”
The CAC Score is now in the 2013 guidelines - but hardly anyone knows (!)

Primary care doctors should be using this as an important screening tool to support and encourage people to take action.

The test when used properly does not lead to more unnecessary testing.

Relatively inexpensive and non-invasive

Although soft plaque is not detected it doesn’t matter – it’s mathematics

Screening age 45 and older

Goal is to stabilize calcium. Very few reduce calcium.
The CAC Score is now in the 2013 guidelines - but hardly anyone knows (!)
Primary care doctors should be using this as an important screening tool to support and encourage people to take action
The test when used properly does not lead to more unnecessary testing.
Relatively inexpensive and non-invasive
Although soft plaque is not detected it doesn’t matter – it’s mathematics
Screening age 45 and older
Goal is to stabilize calcium. Very few reduce calcium.

Final Gem:
The CAC is now obligatory for all US Presidents and all Astronauts. Go figure.
Diabetes is a Vascular Disease