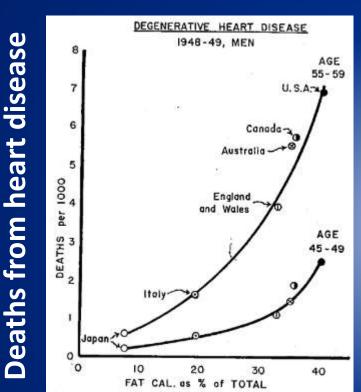
Dietary Fats and Cardiovascular Disease in PURE: A More Complete Picture

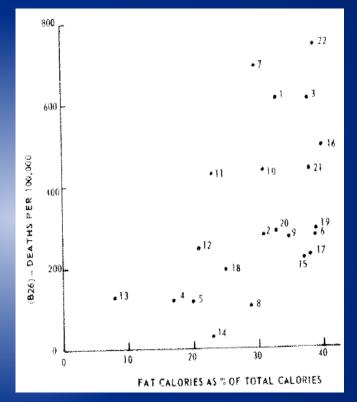
Andrew Mente, PhD Associate Professor, Department of Health Research Methodology, Evidence, and Impact, Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada

I have no disclosures


The Diet - Heart Hypothesis: Conventional Wisdom

Total fat, Saturated fat Serum total & LDL cholesterol

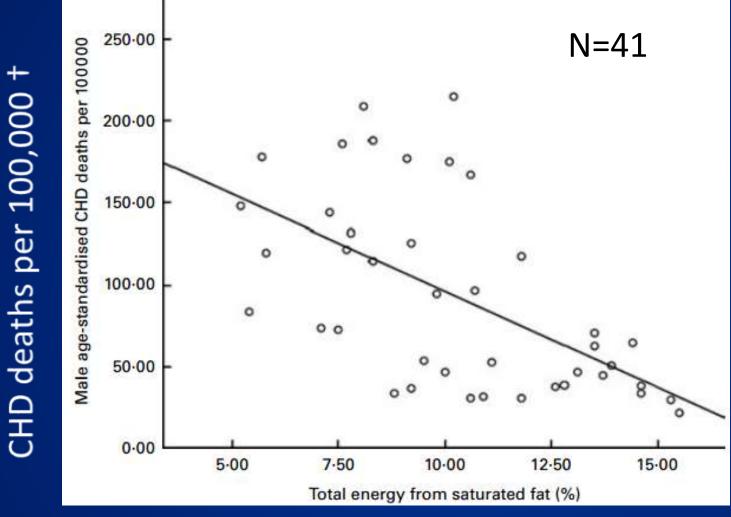
Coronary heart disease



The Original Evidence: Ecological Data from 6 countries

<u>6 Countries</u>¹

22 Countries²



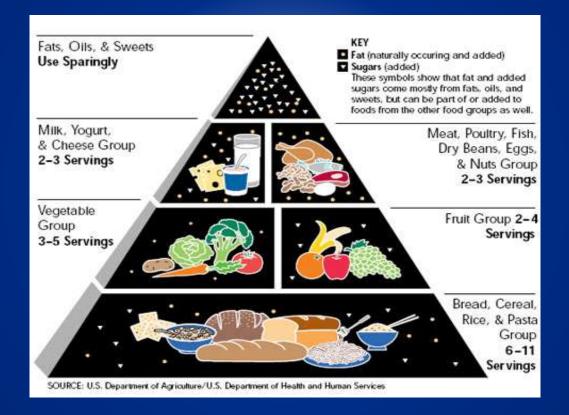
Fat intake, % of energy

Fat intake, % of energy

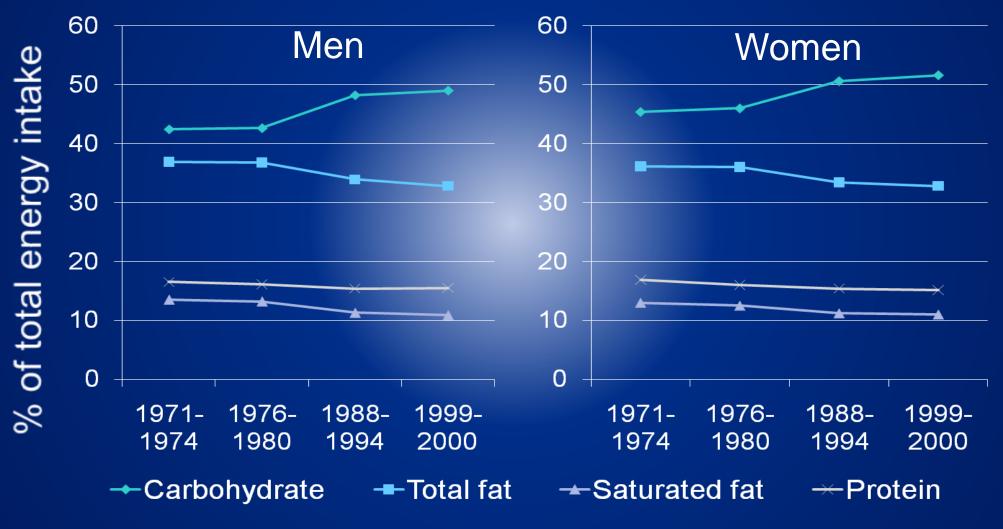
- ¹ Keys A, 1953. J Mt Sinai Hosp
- ² Yerushalmy and Hillebow, 1957. NY State J Med

Saturated fat intake and CHD mortality among men in Europe, 1998

R² = 0.339, P<0.01


Results were similar for women and for CHD & stroke outcomes (all P<0.01)

Total energy from saturated fat (%)


+ age-standardized rates

Hoenselaar R. *Br J Nutr* 2012;108:939–942

1961: American Heart Association adopts low-fat diet to fight heart disease

Trends in macronutrient intake, United States, 1971-2000

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5304a3.htm

Dietary guidelines by various health organizations

Nutrients	IOM/USDA	AHA	NCEP	WHO
Carbohydrate	45-65%			55-75%
Total fat	20-35%	<30%	<30%	15-30%
Saturated fatty acids	As low as possible (<10%)	<7%	<7%	<10%

Macronutrient composition of some popular diets

	Low-carb	Mediterranean	Low-fat
	Eat all you want of meat, dairy and veggies	Veggies, olive oil, nuts, seafood, wine, fruit, some meat/dairy	Whole grains & veggies; no meat
Examples	Atkins	Med. Diet	Ornish
Carbohydrates	10%	50%	70%
Fat	55-65%	35%	10%
Protein	20-30%	15%	20%

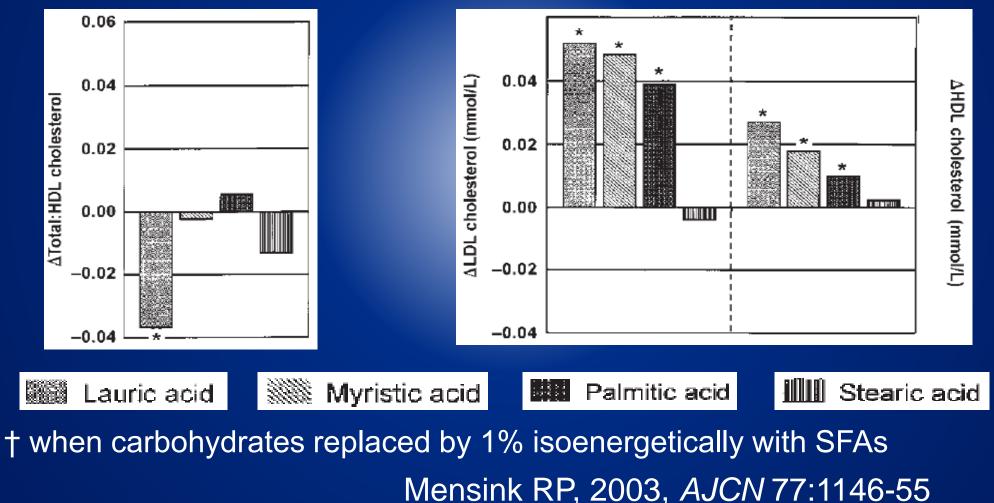
Average intake of saturated fat, by age and sex (National Diet & Nutrition Survey 2008/2009–2010/2011)

	Men		Women		
	19-64 y	≥65 y	19-64 y	≥65 y	
SFA (g/d)	28.8	29.3	22.0	23.2	
% total energy	12.0	13.6	12.0	13.7	

Mean intake is ~12-13% of total energy in both sexes

Markey O, et al. 2014. Nutr Bulletin

- <u>Natural foods</u> containing saturated fat also contain
 - Vitamins B1, B2, B6, B11, B12
 - Protein
 - Zinc
 - Magnesium
 - Retinol
 - Selenium
 - Calcium
 - Vitamin D


May result in inadequate intake of key nutrients in certain populations

Saturated fat and CV risk markers

Effect of saturated fatty acids on serum cholesterol [†]

Total Chol: HDL-C

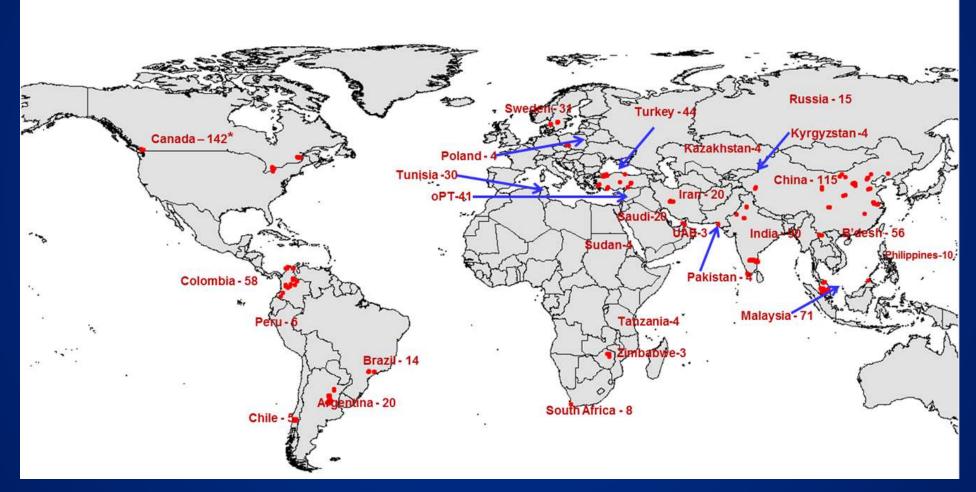
LDL-C HDL-C

Low-fat vs low-carb on metabolic parameters: Meta-analysis of RCTs with >8wks follow-up

Bayesian Analysis

Between Group Differences ^a

	Mean (95% Crl	Probability LoCHO Superior	Probability LoFAT Superior
BMI kg/m ²	-0.6 (-1.5, 0.3)	90.1%	
Cholesterol (mg/dl)	9.6 (2.7, 16.4)		99.7%
HDL-C (mg/dl)	5.4 (3.5, 7.2)	> 99.9%	
LDL-C (mg/dl)	9.1 (3.0, 15.2)		99.8%
TG (mg/dl)	-29.8 (-37.0, -22.6)	> 99.9%	
Systolic BP (mmHg)	-2.3 (-4.4, -0.2)	98.2%	


Sackner-Bernstein et al. PLoS One. 2015;10:e0139817

Association of dietary nutrients with blood lipids and blood pressure in 18 countries: a cross-sectional analysis from the PURE study

Andrew Mente, Mahshid Dehghan, Sumathy Rangarajan, Matthew McQueen, Gilles Dagenais, Andreas Wielgosz, Scott Lear, Wei Li, Hui Chen, Sun Yi, Yang Wang, Rafael Diaz, Alvaro Avezum, Patricio Lopez-Jaramillo, Pamela Seron, Rajesh Kumar, Rajeev Gupta, Viswanathan Mohan, Sumathi Swaminathan, Raman Kutty, Katarzyna Zatonska, Romaina Iqbal, Rita Yusuf, Noushin Mohammadifard, Rasha Khatib, Nafiza Mat Nasir, Noorhassim Ismail, Aytekin Oguz, Annika Rosengren, AfzalhusseinYusufali, Edelweiss Wentzel-Viljoen, Thandi Puoane, Jephat Chifamba, Koon Teo, Sonia S Anand, Salim Yusuf, on behalf of the Prospective Urban Rural Epidemiology (PURE) study investigators*

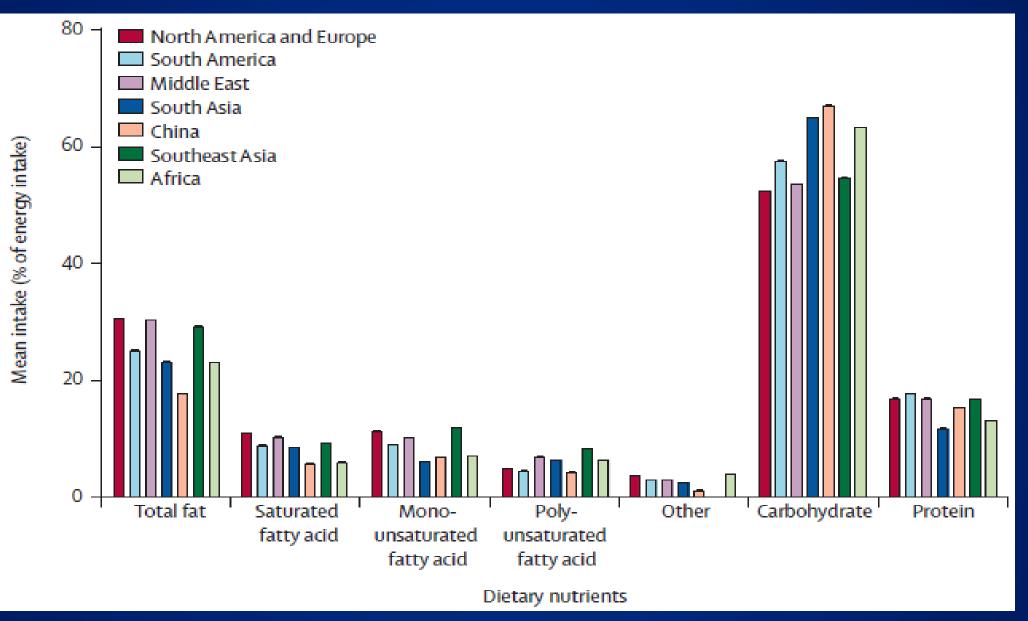
Mente A, et al, 2017, Lancet Diab Endocrinol

PURE: 135,335 from 667 communities in 18 (Phase 1) countries from 5 continents

Target: 200,000 people

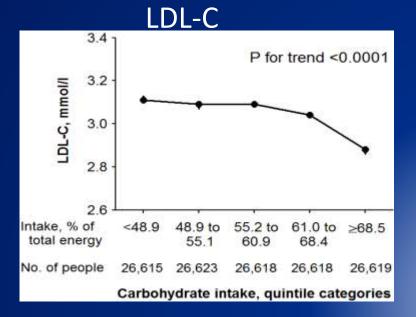
Countries

Geog. region	Countries	Ν
South Asia	Bangladesh, India, Pakistan	29,560
China	China	42,152
Southeast Asia	Malaysia	10,038
Africa	South Africa, Zimbabwe	4,558
North America	Canada, Poland, Sweden,	14,916
Middle East	Iran, Occupied Palestinian Territory, Turkey, UAE	11,485
South America	Argentina, Brazil, Chile, Colombia	22,626
Overall		135,335

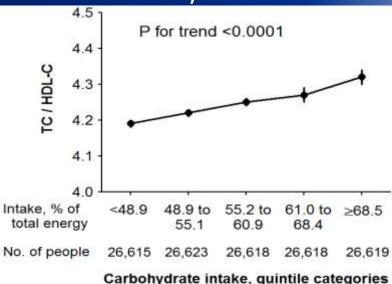

Study Methods

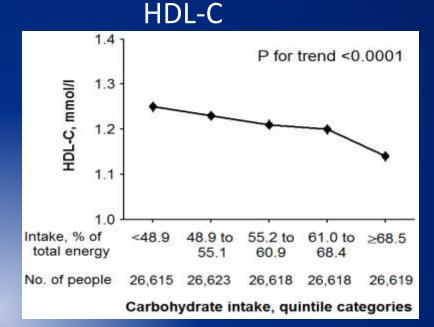
Design: Cross-sectional study

Population: Unbiased selection from general population in 667 urban/rural communities in 18 countries N=135,335; aged 35-70 years, without CVD at baseline **Diet:** Country-specific, validated food frequency questionnaires **Covariates:** Demographics, other lifestyle, health history, center **Outcomes:** Blood pressure (n=125,287); Blood lipids – LDL, HDL, TC/HDL ratio, Trig. (n=104,486); ApoB, ApoA & ApoB/ApoA ratio (n=18,330)

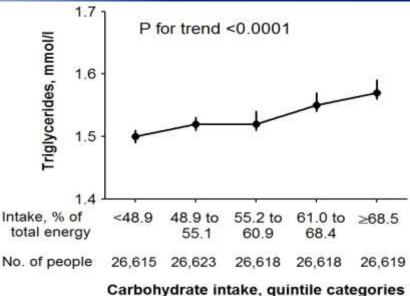

Statistical Analyses: Multivariable linear regression, with random effect models to account for community level clustering

Mean intake of nutrients by geographic region (n=125,287) +

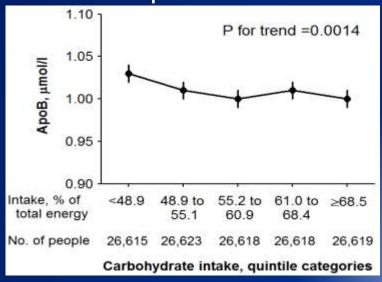



⁺ Means are adjusted for age, sex, and centre.

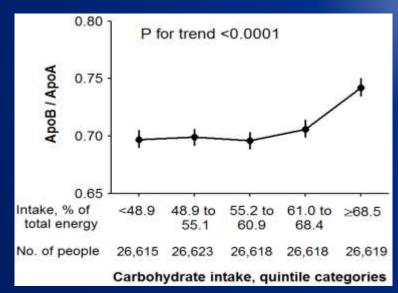
Carbohydrate intake versus risk markers



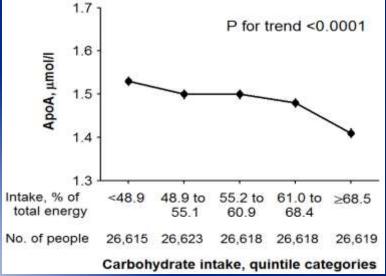
TC / HDL-C



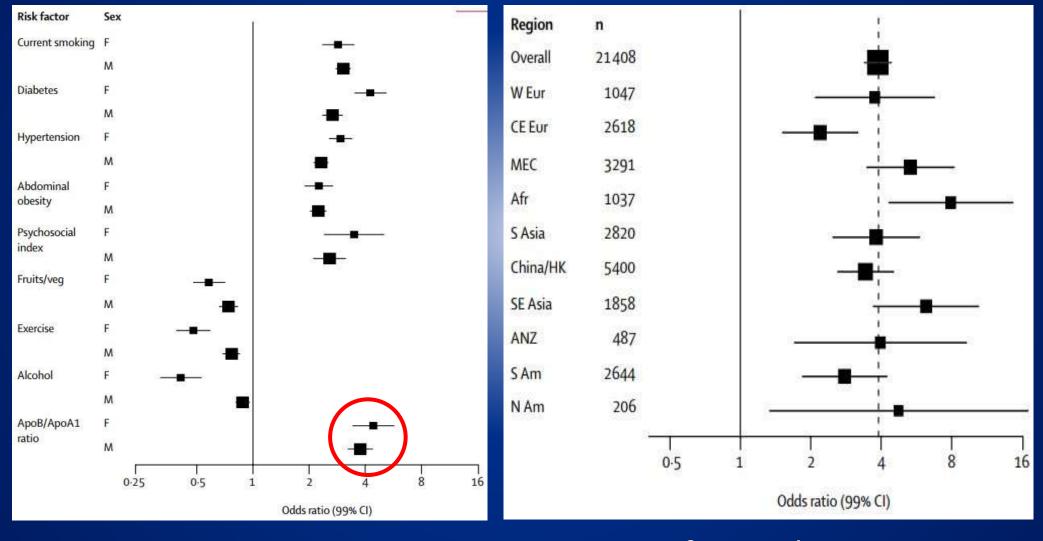
Triglycerides



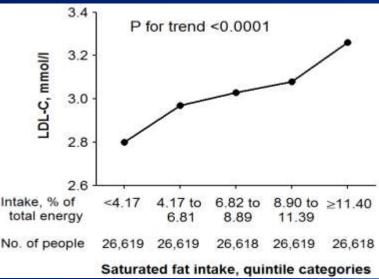
Carbohydrate intake versus risk markers

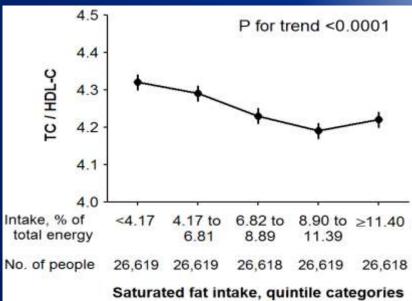

АроВ

АроВ / АроА

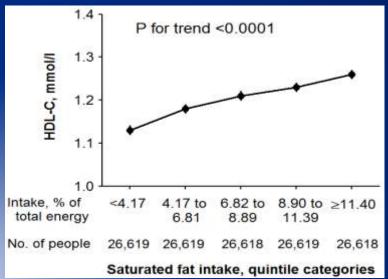

АроА

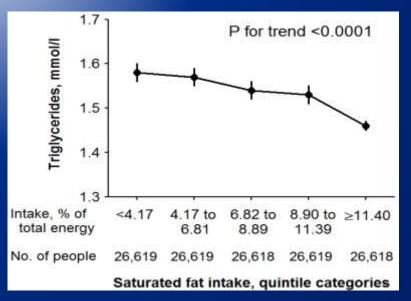
Systolic BP


ApoB/ApoA ratio was the strongest risk marker of MI and stroke in INTERHEART and INTERSTROKE

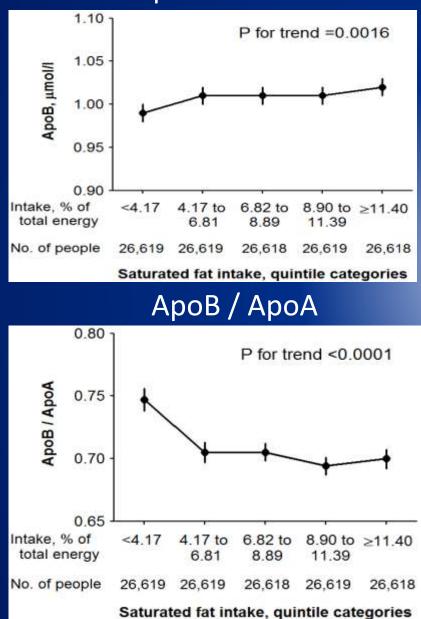

Yusuf S, et al, 2004, Lancet

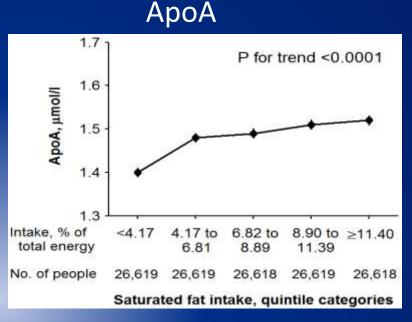
Saturated fat intake versus risk markers

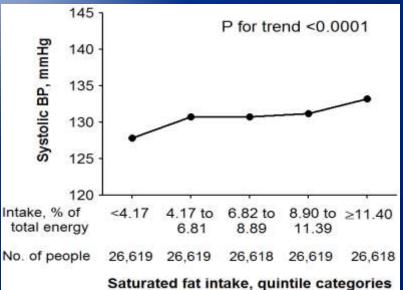



TC / HDL-C

HDL-C

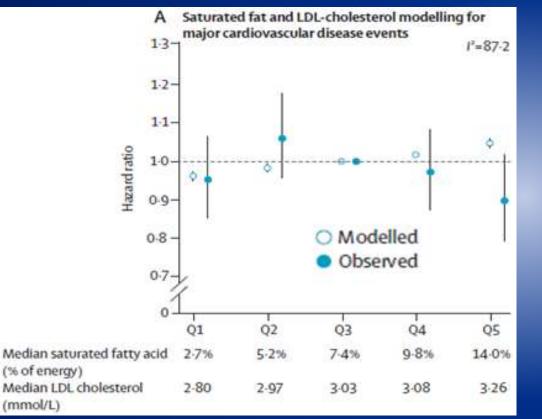



Triglycerides

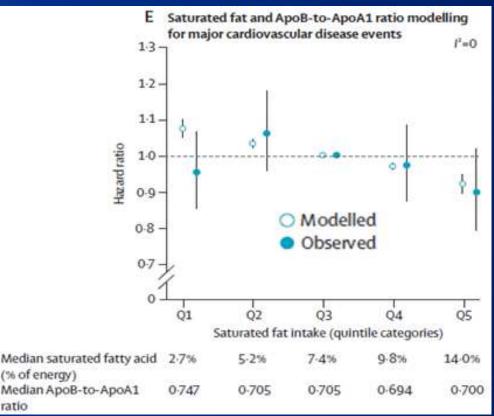

Saturated fat intake versus risk markers

ApoB

Systolic BP



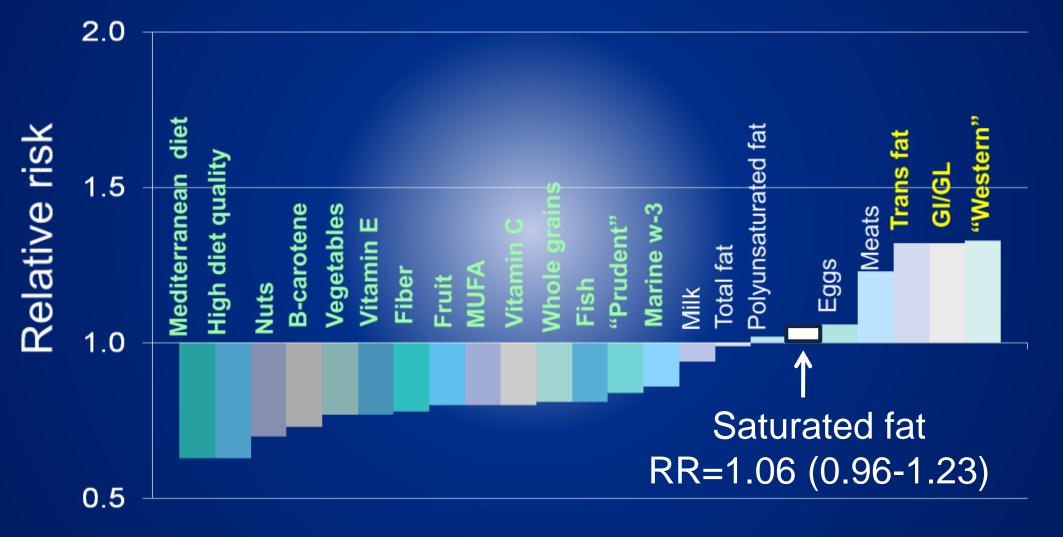
Simulation modelled versus observed hazard ratio of the association between sat. fat & CVD events


ratio

LDL-C

(mmol/L)

ApoB/ApoA

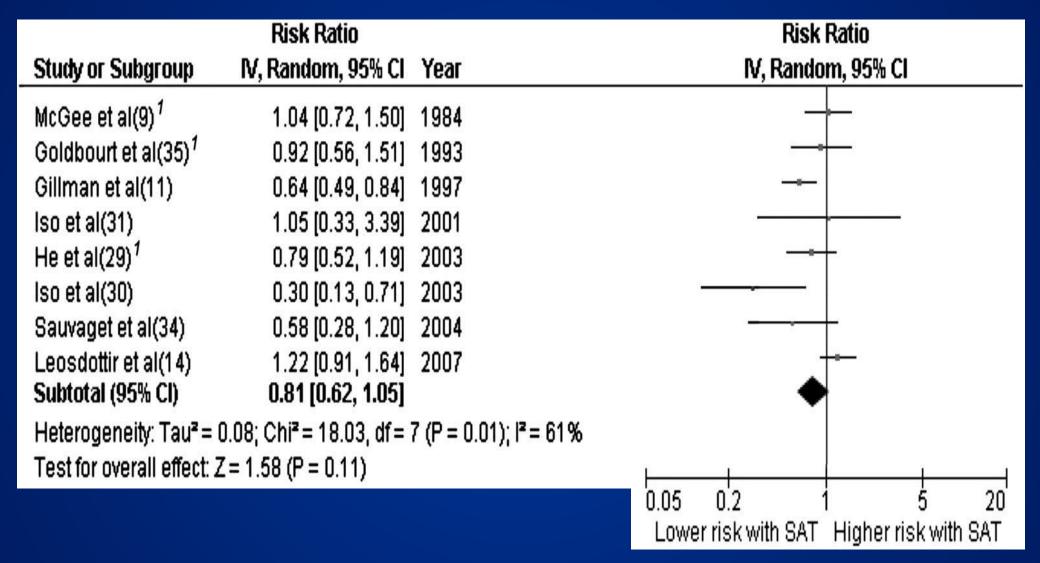

Conclusions

- Reducing sat. fat and replacing it with carbohydrate has an adverse effect on blood lipids
- Focusing on a single lipid marker (ie, LDL) alone does not capture the net clinical effects of nutrients on CVD risk
- Our data are at odds with current recommendations to reduce total fat and saturated fats

Saturated fat and cardiovascular disease

Prospective cohort studies

Relative risk of each dietary exposure in relation to CHD in cohort studies


Mente A et al, 2009, Arch Int Med 169:659-669

Saturated fat intake and CHD

	Risk Ratio		Risk Ratio
Study or Subgroup	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
Coronary Heart	Disease		
Shekelle et al(17)	1.11 [0.91, 1.36]	1981	+-
McGee et al(9) ¹	0.86 [0.67, 1.12]		
Kushi et al(13)	1.33 [0.95, 1.87]		+
Posner et al(16)	0.92 [0.68, 1.24]	1991	
Goldbourt et al(35) ¹	0.86 [0.56, 1.35]	1993	
Fehily et al(28)	1.57 [0.56, 4.42]	1994	
Ascherio et al(4) ¹	1.11 [0.87, 1.42]	1996	
Esrey et al(6)	0.97 [0.80, 1.18]	1996	-+-
Mann et al(32)	2.77 [1.25, 6.13]	1997	
Pietinen et al(15)	0.93 [0.60, 1.44]	1997	
Boniface et al(5) ¹	1.37 [1.17, 1.60]	2002	-
Jakobsen et al(8) ¹	1.03 [0.66, 1.60]	2004	
Oh et al(33)	0.97 [0.74, 1.27]	2005	
Tucker et al(18) ¹	1.22 [0.31, 4.77]	2005	
Xu et al(10)	1.91 [0.31, 11.84]	2006	
Leosdottir et al(14)	0.95 [0.74, 1.21]	2007	
Subtotal (95% CI)	1.07 [0.96, 1.19]		÷
Heterogeneity: Tau ² =	0.02; Chi ² = 25.54, df =	15 (P = 0.04); I ² = 41%	
Test for overall effect:	Z = 1.22 (P = 0.22)		
			Lower risk with SAT Higher risk with SAT

Siri-Tarino et al, Am J Clin Nutr 2010

Saturated fat intake and stroke

Siri-Tarino et al, Am J Clin Nutr 2010

Summary RRs of saturated fat intake and various health outcomes

Outcome	No of studies /comparisons	No of events /participants			Risk ratio (95% Cl)			Relative risk (95% CI)	Р	P _{het}	² (%)
All cause mortali	ty 5/7	14 090/99 906			-			0.99 (0.91 to 1.09)	0.91	0.17	33
CHD mortality	11/15	2970/101712				_		1.15 (0.97 to 1.36)	0.10	<0.001	70
CVD mortality	3/5	3792/90 501						0.97 (0.84 to 1.12)	0.69	0.29	19
CHD total	12/17	6383/267 416						1.06 (0.95 to 1.17)	0.29	0.02	47
Ischemic stroke	12/15	6226/339 090			-			1.02 (0.90 to 1.15)	0.79	0.002	59
Type 2 diabetes	8/8	8739/237 454			-			0.95 (0.88 to 1.03)	0.20	0.61	0
			0	0.5	1.0	1.5	2.0)			
			Satura protec	ted fats t <mark>iv</mark> e		Satu	rated fats harmful				

De Souza RJ, Mente A, et al. 2015. BMJ 351:h3978

Randomized controlled trials

Saturated fat and CVD events

Meta-analyses of RCTs in past 4 years: SFA & CHD

Meta-analysis	N Studies	Relative Risk (95% CI)
Ramsden, 2013	7	0.98 (0.82, 1.19)
Schwingshackl, 2014	12	0.93 (0.72, 1.19)
Harcombe, 2015	7	0.99 (0.78, 1.25)
Hooper, 2015	11	0.90 (0.80, 1.01)
Ramsden, 2016	8	1.07 (0.80, 1.41)
Hamley, 2017	5	1.06 (0.86, 1.31)

Summary of cohort studies and RCTs of saturated fat & clinical events

• Saturated fats are not associated with all cause mortality, CVD, CHD, stroke, or type 2 diabetes

 Replacing saturated fat with mostly n-6 PUFA is unlikely to reduce CHD events, CHD mortality or total mortality

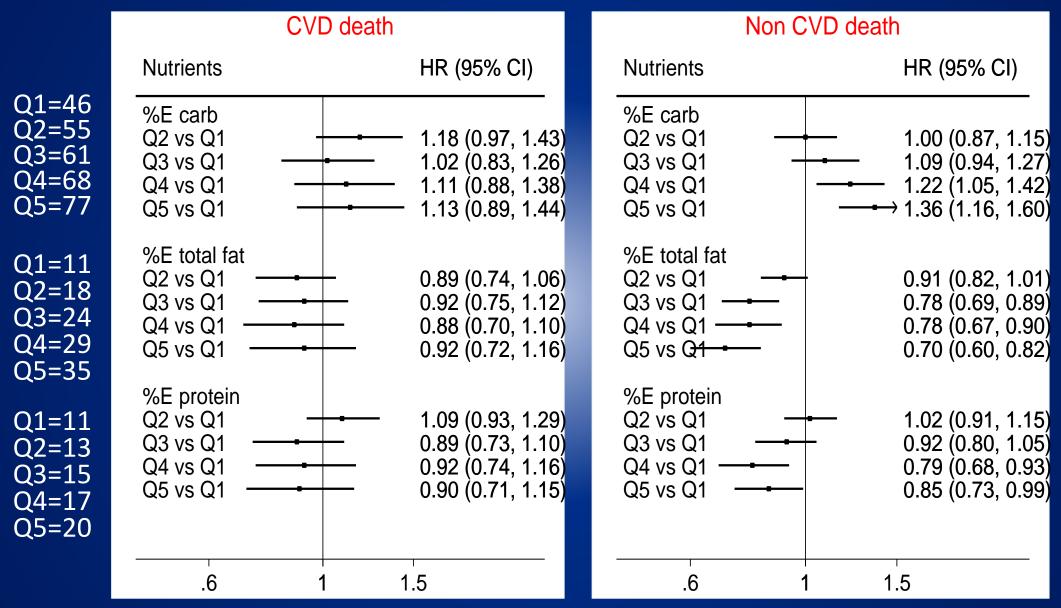
Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study

Mahshid Dehghan, Andrew Mente, Xiaohe Zhang, Sumathi Swaminathan, Wei Li, Viswanathan Mohan, Romaina Iqbal, Rajesh Kumar, Edelweiss Wentzel-Viljoen, Annika Rosengren, Leela Itty Amma, Alvaro Avezum, Jephat Chifamba, Rafael Diaz, Rasha Khatib, Scott Lear, Patricio Lopez-Jaramillo, Xiaoyun Liu, Rajeev Gupta, Noushin Mohammadifard, Nan Gao, Aytekin Oguz, Anis Safura Ramli, Pamela Seron, Yi Sun, Andrzej Szuba, Lungiswa Tsolekile, Andreas Wielgosz, Rita Yusuf, Afzal Hussein Yusufali, Koon K Teo, Sumathy Rangarajan, Gilles Dagenais, Shrikant I Bangdiwala, Shofiqul Islam, Sonia S Anand, Salim Yusuf, on behalf of the Prospective Urban Rural Epidemiology (PURE) study investigators*

Dehghan M, et al, 2017, The Lancet

Study Methods

Design: Prospective cohort study **Population:** Unbiased selection from general population in 667 urban/rural communities in 18 countries N=135,335; aged 35-70 years, without CVD at baseline **Diet:** Country-specific, validated food frequency questionnaires **Covariates:** Demographics, other lifestyle, health history, center **Outcomes:** Major CVD (CV death and nonfatal MI, stroke, and heart failure) (n=4784), using standardized definitions; total mortality (n=5796) Follow-up: Median 7.4 years **Statistical analyses:** Multivariable Cox frailty analysis with study centre as random intercept


Risk of mortality and major CVD by macronutrient intake

	Mortality			Major CVD	
	Nutrients	HR (95% CI)	Nutrients		HR (95% CI)
Q1=46 Q2=55 Q3=61 Q4=68 Q5=77	%E carb Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1	1.07 (0.96, 1.20) 1.06 (0.94, 1.19) 1.17 (1.03, 1.32) — 1.28 (1.12, 1.46)	%E carb Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1		1.00 (0.90, 1.12) 1.02 (0.91, 1.14) 1.08 (0.96, 1.22) 1.01 (0.88, 1.15)
Q1=11 Q2=18 Q3=24 Q4=29 Q5=35	%E total fat Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1 Q5 vs Q1	0.90 (0.82, 0.98) 0.81 (0.73, 0.90) 0.80 (0.71, 0.90) 0.77 (0.67, 0.87)	%E total fat Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1		1.01 (0.92, 1.11) 1.01 (0.90, 1.13) 0.95 (0.84, 1.07) 0.95 (0.83, 1.08)
Q1=11 Q2=13 Q3=15 Q4=17 Q5=20	%E protein Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1 Q5 vs Q1	1.05 (0.96, 1.15) 0.92 (0.82, 1.03) 0.85 (0.75, 0.96) 0.88 (0.77, 1.00)	%E protein Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1		1.02 (0.91, 1.13) 1.08 (0.96, 1.22) 1.09 (0.97, 1.24) 0.96 (0.84, 1.10)
	.6 1	1.5	.6	1	1.5

Risk of mortality and major CVD by type of fat

	Mortalit	у		Major CVD)
	Nutrients	HR (95% CI)	Nutrients		HR (95% CI)
Q1=3 Q2=6 Q3=8 Q4=10 Q5=13	%E SFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1 Q5 vs Q1	0.96 (0.88, 1.05) 0.92 (0.83, 1.02) 0.85 (0.75, 0.95) 0.86 (0.76, 0.99)	%E SFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1		1.13 (1.02, 1.25) 1.06 (0.95, 1.18) 1.03 (0.91, 1.17) 0.95 (0.83, 1.10)
Q1=4 Q2=6 Q3=8 Q4=10 Q5=13	%E MUFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1 Q5 vs Q1	1.02 (0.93, 1.11) 0.91 (0.82, 1.00) 0.81 (0.72, 0.91) 0.81 (0.71, 0.92)	%E MUFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1		1.04 (0.94, 1.15) 1.06 (0.95, 1.18) 1.02 (0.90, 1.15) 0.95 (0.84, 1.09)
Q1=2 Q2=4 Q3=5 Q4=6 Q5=9	%E PUFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1 Q5 vs Q1	0.92 (0.84, 1.01) 0.87 (0.79, 0.96) 0.85 (0.77, 0.94) 0.80 (0.71, 0.89)	%E PUFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1		1.01 (0.91, 1.11) 0.99 (0.89, 1.10) 0.97 (0.87, 1.09) 1.01 (0.90, 1.14)
	.6 1	1.5	.6	1	1.5

Risk of CVD and non-CVD death by macronutrient intake

Risk of CVD and non-CVD death by type of fat

	CVD	death	Non CVD	death
	Nutrients	HR (95% CI)	Nutrients	HR (95% CI)
Q1=3 Q2=6 Q3=8 Q4=10 Q5=13	%E SFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1	1.04 (0.87, 1.24) 0.95 (0.78, 1.17) 0.99 (0.79, 1.23) 0.83 (0.65, 1.07)	%E SFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1 Q5 vs Q1	0.94 (0.84, 1.04) 0.91 (0.81, 1.03) 0.78 (0.68, 0.91) 0.86 (0.73, 1.01)
Q1=4 Q2=6 Q3=8 Q4=10 Q5=13	%E MUFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1	1.07 (0.90, 1.26) 0.98 (0.81, 1.18) 0.90 (0.73, 1.12) 0.85 (0.66, 1.09)	%E MUFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1 Q5 vs Q1	1.00 (0.90, 1.11) 0.86 (0.76, 0.97) 0.77 (0.67, 0.89) 0.79 (0.68, 0.93)
Q1=2 Q2=4 Q3=5 Q4=6 Q5=9	%E PUFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1	— 0.99 (0.82, 1.19) 0.88 (0.72, 1.07) 0.81 (0.67, 0.99) — 0.94 (0.76, 1.15)	%E PUFAs Q2 vs Q1 Q3 vs Q1 Q4 vs Q1 Q5 vs Q1 Q5 vs Q1	0.90 (0.80, 1.00) 0.86 (0.76, 0.96) 0.88 (0.78, 0.99) 0.75 (0.65, 0.86)
	.6 1	1.5	.6 1	1.5

Strengths

- Prospective design, large, and covers 5 continents representing diverse diets globally
- Standardized and validated methods to measure diet using country specific food frequency questionnaire
- Extensively adjusted for dietary and non-dietary covariates

Limitations

- Random measurement error in assessment of diet; may dilute real associations
- High-carbohydrate and low-fat diets may be a proxy for poverty
- Unable to measure trans fat; data on vegetable oil use not included (separate paper)
- Fewer events within countries or regions

 Ongoing follow-up with larger sample size in PURE will provide clear answers by region

Conclusions and implications

- A high carbohydrate diet (>50-55%E) is associated with higher risk of mortality
- Fats, including saturated and unsaturated fats, are associated with lower risk of mortality
- No association between total fat, types of fat and CVD events

Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study

Victoria Miller, Andrew Mente, Mahshid Dehghan, Sumathy Rangarajan, Xiaohe Zhang, Sumathi Swaminathan, Gilles Dagenais, Rajeev Gupta, Viswanathan Mohan, Scott Lear, Shrikant I Bangdiwala, Aletta E Schutte, Edelweiss Wentzel-Viljoen, Alvaro Avezum, Yuksel Altuntas, Khalid Yusoff, Noorhassim Ismail, Nasheeta Peer, Jephat Chifamba, Rafael Diaz, Omar Rahman, Noushin Mohammadifard, Fernando Lana, Katarzyna Zatonska, Andreas Wielgosz, Afzalhussein Yusufali, Romaina Iqbal, Patricio Lopez-Jaramillo, Rasha Khatib, Annika Rosengren, V Raman Kutty, Wei Li, Jiankang Liu, Xiaoyun Liu, Lu Yin, Koon Teo, Sonia Anand, Salim Yusuf, on behalf of the Prospective Urban Rural Epidemiology (PURE) study investigators^{*}

Miller V, et al, 2017, The Lancet

Risk of <u>mortality</u> and <u>major CVD</u> by total fruit, vegetable and legume intake (servings/day)

Mortality

Major CVD

Intake		HR (95% CI)	Intake		HR (95% CI)
<1/day	•	1.00 (1.00, 1.00)	<1/day	-	1.00 (1.00, 1.00)
1 to <2/day		1.01 (0.91, 1.12)	1 to <2/day		1.03 (0.89, 1.18)
2 to <3/day		0.91 (0.82, 1.01)	2 to <3/day		1.09 (0.96, 1.20)
3 to <4/day	→	0.78 (0.69, 0.88)	3 to <4/day	-	1.06 (0.92, 1.22)
4 to <5/day	· · · · · · · · · · · · · · · · · · ·	0.83 (0.72, 0.95)	4 to <5/day		1.20 (1.02, 1.40)
5 to <6/day -		0.78 (0.66, 0.91)	5 to <6/day		0.95 (0.79, 1.14)
6 to <7/day	°	0.84 (0.70, 1.00)	6 to <7/day		0.93 (0.76, 1.14)
7 to <8/day	•	0.83 (0.67, 1.02)	7 to <8/day		0.97 (0.77, 1.21)
>8/day		0.81 (0.68, 0.96)	>8/day		0.90 (0.74, 1.10)
0.6	0.8 1 1.2	P-trend= 0.0001	0.6	0.8 1 1.2 1	4 P-trend= 0.13

Conclusions and implications

 Current advice to limit total fat to <30%E and saturated fat to <10%E are not supported by this global study

CONCLUSION

 Foods containing SFA such as dairy and meat may be part of a healthy dietary pattern shown to reduce CVD (eg, 'Mediterranean diet')

• Focus on eating natural foods, reduce intake of refined or starchy carbohydrate foods, and be less concerned about targets for individual nutrients

PURE Investigators Meeting, New Delhi, India November 2017

Acknowledgement

